• DMCA
  • Disclaimer
  • Privacy Policy
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us
Inter Space Sky Way
  • Home
  • Alien
  • UFO
  • Space
  • NASA
  • Space Flight
  • Astronomy
No Result
View All Result
  • Home
  • Alien
  • UFO
  • Space
  • NASA
  • Space Flight
  • Astronomy
No Result
View All Result
Inter Space Sky Way
No Result
View All Result
Home Space

Observations detect a brand new long-period radio transient related to supernova remnant G22.7-0.2

December 3, 2024
in Space
58 4
0
Observations detect a brand new long-period radio transient related to supernova remnant G22.7-0.2
74
SHARES
1.2k
VIEWS
Share on FacebookShare on Twitter


You might also like

Earth’s largest fashionable crater found in Southern China

Area forecasters say photo voltaic storms may hit Earth and set off auroras : NPR

The Inconceivable Black Holes That Should not Exist

Observations detect a new long-period radio transient associated with supernova remnant G22.7-0.2
Radio picture of DART J1832-0911. The supply is indicated within the white dotted field, throughout the SNR G22.7-0.2. Credit score: Li et al., 2024.

Utilizing the DAocheng Radio Telescope (DART), Chinese language astronomers have detected a long-period transient occasion. The newfound transient, which obtained designation DART J1832-0911, has a interval of roughly 44 minutes and is related to a supernova remnant often called G22.7-0.2. The discovering was reported Nov. 24 on the pre-print server arXiv.

The so-called long-period radio transients (LPTs) are a brand new class of periodic radio emitters, with ultralong rotation durations (starting from minutes to hours) and robust magnetic fields. Though some research have advised that LPTs might originate from rotating neutron stars with extraordinarily robust magnetic fields (magnetars) or magnetic white dwarfs, their true nature remains to be debated.

Up to now, solely eight LPTs have been recognized, and now, a staff of astronomers led by Di Li of Tsinghua College in Beijing, China, reviews the detection of the ninth transient of this sort. By conducting interferometric imaging with DART, throughout a frequency vary of 149–459 MHz, they discovered an LPT throughout the projected area of supernova remnant (SNR) G22.7–0.2.

In accordance with the paper, DART J1832-0911 has a spin interval of 44.27 minutes and dispersion measure of about 480 laptop/cm3. The recorded pulses of this LPT confirmed an estimated peak flux density between 0.5–2 Jy. Afterward, the transient entered a long-period quiescent state.

The observations discovered that DART J1832-0911 displayed a spread of emission traits throughout its lively radio interval. It underwent mode adjustments modulated by variations in pulse width and energy. These adjustments revealed its evolution from shiny, broad pulses to weaker, narrower ones.

“Within the wide-pulse mode, pulses are usually robust, with widths round 200–250 seconds, whereas within the narrow-pulse mode, the pulses are a lot weaker, with widths of roughly 40–100 seconds,” the paper reads.

Primarily based on the dispersion measure, the astronomers calculated the gap to DART J1832-0911, which was estimated to be roughly 14,700 gentle years. That is in line with the gap to G22.7-0.2, which signifies that the transient resides within the supernova remnant bubble. Due to this fact, that is the primary proof associating LPTs with SNRs.

Furthermore, the research discovered that DART J1832-0911 showcases extremely polarized emission. The astronomers defined that it shows both phase-locked circularly polarized emission or practically 100% linear polarization in radio bands.

Attempting to elucidate the origin of LPTs, the authors of the paper concluded that the invention of DART J1832-0911 favors the neutron star situation. They added that the spatial affiliation between the newfound LPT and G22.7-0.2 signifies that it’s possible the stellar stays of a supernova, particularly a neutron star, slightly than a white dwarf.

Extra info:
Di Li et al, A 44-minute periodic radio transient in a supernova remnant, arXiv (2024). DOI: 10.48550/arxiv.2411.15739

Journal info:
arXiv


© 2024 Science X Community

Quotation:
Observations detect a brand new long-period radio transient related to supernova remnant G22.7-0.2 (2024, December 3)
retrieved 3 December 2024
from

This doc is topic to copyright. Aside from any honest dealing for the aim of personal research or analysis, no
half could also be reproduced with out the written permission. The content material is supplied for info functions solely.





Source link

Tags: detectG22.70.2longperiodobservationsRadioremnantSupernovatransient
Share30Tweet19

Recommended For You

Earth’s largest fashionable crater found in Southern China

by Chato80
November 13, 2025
0
Earth’s largest fashionable crater found in Southern China

A panoramic aerial drone picture of the Jinlin crater with the approximate location of the crater rim labeled, with an insert of the crater flooring, which reveals a...

Read more

Area forecasters say photo voltaic storms may hit Earth and set off auroras : NPR

by Chato80
November 12, 2025
0
Area forecasters say photo voltaic storms may hit Earth and set off auroras : NPR

The northern lights fill the sky behind the Saint Joseph the Woodworker Shrine Tuesday, Nov. 11, 2025, close to Valley Falls, Kan. Charlie Riedel/AP conceal caption toggle caption...

Read more

The Inconceivable Black Holes That Should not Exist

by Chato80
November 12, 2025
0
The Inconceivable Black Holes That Should not Exist

In 2023, gravitational wave detectors picked up the signature of a collision 7 billion mild years away. Two black holes had merged in an explosion of warped space-time,...

Read more

India exams parachutes for Gaganyaan astronaut capsule (video)

by Chato80
November 11, 2025
0
India exams parachutes for Gaganyaan astronaut capsule (video)

India took one other step towards its first-ever human spaceflight final week, efficiently testing the parachute system for its Gaganyaan astronaut capsule.The take a look at occurred on...

Read more

Odds of asteroid 2024 YR4 hitting the moon might rise to 30 per cent

by Chato80
November 11, 2025
0
Odds of asteroid 2024 YR4 hitting the moon might rise to 30 per cent

Asteroid 2024 YR4 might hit the moonMARK GARLICK/SCIENCE PHOTO LIBRARY Astronomers are working out of time to resolve whether or not to forestall asteroid 2024 YR4 from hitting...

Read more
Next Post
Catch Jupiter at Opposition 2024 This Coming Weekend

Catch Jupiter at Opposition 2024 This Coming Weekend

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Browse by Category

  • Alien
  • Astronomy
  • NASA
  • Space
  • Space Flight
  • UFO

Recent News

Firefly Aerospace identifies reason behind Alpha take a look at anomaly

Firefly Aerospace identifies reason behind Alpha take a look at anomaly

November 13, 2025
Earth’s largest fashionable crater found in Southern China

Earth’s largest fashionable crater found in Southern China

November 13, 2025
Meet Jacklyn, The Barge That Modified Blue Origin’s Plans

Meet Jacklyn, The Barge That Modified Blue Origin’s Plans

November 12, 2025
SpaceX progress on Starship Pad realignment for the longer term

SpaceX progress on Starship Pad realignment for the longer term

November 12, 2025
Area forecasters say photo voltaic storms may hit Earth and set off auroras : NPR

Area forecasters say photo voltaic storms may hit Earth and set off auroras : NPR

November 12, 2025
The Inconceivable Black Holes That Should not Exist

The Inconceivable Black Holes That Should not Exist

November 12, 2025
  • DMCA
  • Disclaimer
  • Privacy Policy
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us
INTER SPACE SKY WAY

Copyright © 2023 Inter Space Sky Way.
Inter Space Sky Way is not responsible for the content of external sites.

No Result
View All Result
  • Home
  • Alien
  • UFO
  • Space
  • NASA
  • Space Flight
  • Astronomy

Copyright © 2023 Inter Space Sky Way.
Inter Space Sky Way is not responsible for the content of external sites.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In